combinatoria CHEMISTRY

Article

Solid-Phase Synthesis of 2,3-Disubstituted Benzo[*b*]thiophenes and Benzo[*b*]selenophenes

Chinh T. Bui, and Bernard L. Flynn

J. Comb. Chem., 2006, 8 (2), 163-167• DOI: 10.1021/cc050066w • Publication Date (Web): 02 December 2005

Downloaded from http://pubs.acs.org on March 22, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 5 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Solid-Phase Synthesis of 2,3-Disubstituted Benzo[b]thiophenes and Benzo[b]selenophenes

Chinh T. Bui and Bernard L. Flynn*

Iliad Chemicals Pty Ltd, c/o The Department of Chemistry, La Trobe University, Bundoora, Victoria 3086, Australia

Received May 19, 2005

A concise and efficient solid-phase synthesis of benzo[*b*]thiophenes and benzo[*b*]selenophenes based on a combination of palladium-mediated coupling and iodocyclization protocols has been developed.

The benzo[*b*]thiophene ring system has long been recognized as an excellent scaffold for the development of bioactive compounds.¹ This scaffold may be used as an isosteric replacement for naturally occurring indoles and benzo[*b*]furans or used in its own right to develop novel pharmacophores.¹ Benzo[*b*]thiophene derivatives currently in pharmaceutical use or development include estrogen receptor antagonists,² antimitotic agents,³ modulators of multidrug resistance,⁴ angiogenesis inhibitors,⁵ cognition enhancers,⁶ and antifungal⁷ and antiinflammatory⁸ agents to name but a few. Indeed, benzo[*b*]thiophenes may be regarded as a "privileged class" of structure from which druglike bioactives can be reasonably readily developed.

The benzo[*b*]selenophene ring system has been rarely utilized in drug discovery, but given its similarities to the benzo[*b*]thiophene ring system, it probably warrants greater attention than it has been given to date. Herein we report a solid-phase synthesis of both benzo[*b*]thiophenes and benzo-[*b*]selenophenes that can be used to provide a highthroughput synthesis capability for drug discovery.

Recently, in connection with our ongoing efforts to develop a potent inhibitor of tubulin polymerization, we developed a concise access to benzo[*b*]thiophenes based on a combination of palladium-mediated coupling and iodo-cyclization protocols.^{3a,9,10} We have now extended this to a solid-phase synthesis protocol for both benzo[*b*]thiophenes and benzo[*b*]selenophenes using identical chemistries in both cases. Resin-bound substrates **8** and **9** were conveniently prepared from commercially available methyl 3-iodo-4-aminobenzoate **1**. This involved initial formation of the triazene **2**, which could be converted to either the sulfide **3** or the selenide **4** in moderate to good yields (Scheme 1). After ester hydrolysis, the resultant acids **5** and **6** were linked to a polystyrene resin through a Rink linker to give the resinbound amides **8** and **9**.

Resin-bound substrates 8 and 9 were coupled to a series of alkynes 10 (Figure 1) under Sonogashira conditions to give 11 and 12 (Scheme 2). Treatment of the resin-bound substrates 11 and 12 with elemental iodine in dichloromethane (DCM) gave the iodocyclized compounds 13 and **Scheme 1.** Preparation of Resin-Bound *o*-Iodomethylphenyl Sulfide **8** and *o*-Iodomethylphenyl Selenide 9^a

 a (i) 1 M HCl (aq), NaNO₂, piperidine; (ii) MeSNa (or MeSeNa generated from NaBH₄ and MeSe–SeMe), MeOH, then TFA; (iii) NaOH, H₂O/MeOH, then HCl (aq); (iv) **7**-Fmoc was deprotected with piperidine and free amine, **7**, coupled to **5** or **6** with HOBt, diisopropylcarbodiimide.

14, which were coupled to a series of boronic acids 15 (Figure 1) under Suzuki coupling conditions to give 16 and 17. Cleavage of 16 and 17 using TFA in DCM provided the 2,3-disubstituted benzo[b]thiophenes 18 and benzo[b]selenophenes 19 (110 compounds, see Tables 1 and 2). In both the Sonogashira and Suzuki couplings, the catalyst loading was quite high (20 and 40%, respectively). No studies were undertaken to verify if such high catalyst loading is absolutely necessary, and it may be that they can be reduced.

Compounds with less than 70% purity after initial cleavage (\sim 40% of compounds) were subject to a simple purification procedure involving initial elution through a short pad of silica (2 cm long × 0.5 cm diameter) with 5% ethyl acetate

^{*} To whom correspondence should be addressed. E-mail: b.flynn@ iliad.com.au.

Figure 1. Alkynes **10a**–**f** and boronic acids **15g**–**p** used in library synthesis (see Scheme 2).

Scheme 2. Library Synthesis of Benzo[b]thiophenes 18 and Benzo[b]selenophenes 19 on Resin Solid Support^{*a*}

^{*a*} See Figure 1 for definitions of **10a**-**f** and **15g**-**p**. (i) **10** 8 equiv, PdCl₂(PPh₃)₂ 18 mol %, CuI 22 mol %, piperidine/THF (1:1), 65 °C, 16 h; (ii) I₂ 2 equiv, DCM; (iii) **15** 5 equiv, Pd(PPh₃)₄ 40 mol %, TBAF, K₂CO₃, 65 °C, 16 h; (iv) 20% TFA in DCM.

in hexane, followed by a second elution with 60% ethyl acetate in hexane. The product was obtained by evaporation of the second elution. To establish that the first elution (5% ethyl acetate in hexane) did not contain significant quantities of product, we performed LC/MS traces on both fractions. The effect of this purification approach is exemplified for **18eh** (Figure 2). The product obtained directly from cleavage had a purity of 24% (LC/MS 1, Figure 2). The first fraction contained no observable product but significant impurity (LC/MS 2, Figure 2), and the second fraction contained all

Table 1. Library Synthesis of Benzothiophene 18 (X = S)

	substituent				$MS, M + H^+$	
compd	R1	R2	LC: t_r , min	% purity ^a	expected	found
18ag	а	g	7.85	96	360.4	360.1
18ah	а	h	9.46	79	348.4	348.1
18ai	а	i	6.29	77	355.5	355.1
18aj	a	j	10.98	81	386.5	386.1
18ak	a	k	7.05	74	374.5	374.1
18al	a	1	10.36	83	373.5	373.1
18am	а	m	5.31	73	361.5	361.1
18an	а	n	7.14	71	336.5	336.1
18ao	а	0	7.04	75	336.4	336.1
18ap	a	р	8.26	70	378.4	378.1
18bg	b	g	6.85	71	390.5	390.1
18bh	b	h	7.21	11	378.4	378.1
18bi	b	1	5.3	69	385.4	385.1
18bj	b	j	8.38	87	416.5	416.2
18bk	b	k	5.92	72	404.4	404.1
1801	b	I	8.65	81	403.5	403.2
180m	D h	m	4.61	/1	391.4	391.1
180n	b	n	5.96	/8	366.4	366.1
1800 18hn	b	0	5.99	/9	300.4	300.1
100p	D	р	0.41	80	408.5	408.1
100g	c	g	9.82	70	374.3	262.1
1001	c	:	8 20	70 76	302.4	260.1
1001 180i	c	1	8.29 12.70	70	309.4 400.5	309.1 400.2
100j 180k	C	J k	42.79	72	400.5	400.2 388 1
100K	c	1	13 42	80	387.5	387.2
1001 18cm	c	m	6.95	78	375.4	375.1
18cm	c	n	8.99	76	350.4	350.1
18co	c	0	9.2	70	350.4	350.1
18cn	c	n	11.29	73	392.5	392.1
18dg	d	P g	8.53	70	378.4	378.1
18dh	d	ĥ	8.68	77	366.4	366.1
18di	d	i	6.32	73	373.4	373.1
18dj	d	i	36.32	73	404.5	404.2
18dk	d	k	7.76	71	392.4	392.1
18dl	d	1	11.15	84	391.5	391.1
18dm	d	m	5.75	69	379.4	379.1
18dn	d	n	7.71	75	354.4	354.1
18do	d	0	7.61	75	354.4	354.1
18dp	d	р	8.94	73^{b}	396.4	396.1
18eg	e	g	17.46	76	436.5	436.2
18eh	e	h	20.94	85	424.5	424.1
18ei	e	i	14.48	71	431.5	431.1
18ek	e	k	15.47	58	450.5	450.1
18el	e	I	25.8	670	449.5	449.1
18em	e	m	12.07	75	437.5	437.1
18en	e	n	16.55	71	412.5	412.1
1860	e	0	15.69	83	412.5	412.1
181g 1941-	I £	g L	5.52	/0 77	501.4 240.4	301.1 240.1
191U 185] 2	n :	3.31	//	549.4 256 4	349.1
1011 1941	1 4	1	2.09	ð1 01	330.4 274 4	330.1 274 1
1011 18fa	1 F	1	4.31	01	314.4 327 1	374.1
1010	1	0	5.01	00	557.4	557.1

^{*a*} Purity measurements were made by integration of the LC/MS traces, based on UV absorption at 214 nm (similar integration patterns observed at 254 nm in most cases). ^{*b*} Based on integration after subtraction of solvent peak (ethyl acetate).

the product with a substantially improved purity of 85% (LC/MS 3, Figure 2).¹¹ In all cases where measurements were taken, the yield of the product was found to be between 60 and 80%.¹² Accordingly, this approach to compound library synthesis of benzo[*b*]thiophenes and benzo[*b*]selenophenes can provide products in good purity, in good yields, and in high throughput manner.

Table 2. Library Synthesis of Benzoselenophene **19** (X = Se)

	substituent			$MS, M + H^+$		
compd	R1	R2	LC: t_r , min	% purity	expected ^a	found
19ag	а	g	7.11	62	408.3	408.1
19ah	а	ĥ	8.73	70	396.3	396.0
19ai	а	i	6.32	85	403.3	403.0
19aj	а	j	32.87	52^{b}	434.4	434.1
19ak	а	k	7.06	80	422.3	422.0
19al	а	1	10.17	89	421.4	421.1
19am	а	m	4.98	74	409.3	409.0
19an	а	n	6.27	80	384.4	384.0
19ao	а	0	7.08	82	384.4	384.0
19ap	а	р	8.02	65	426.4	426.0
19bg	b	g	6.74	51^{b}	438.4	438.1
19bh	b	h	7.73	84	426.3	426.0
19bi	b	i	5.19	68	433.3	433.1
19bj	b	j	25.86	75	464.4	464.1
19bk	b	k	6.21	67	452.3	452.0
19bl	b	1	8.53	65^{b}	451.4	451.1
19bm	b	m	4.79	78	439.3	439.1
19bn	b	n	5.68	87	414.3	414.0
19bo	b	0	5.7	69 ^b	414.3	414.0
19cg	с	g	10.87	67	422.4	422.1
19ch	с	h	12.25	64	410.3	410.0
19ci	с	i	7.86	81 ^b	417.3	417.0
19cj	с	j	46.04	88	448.4	448.1
19ck	с	k	9.71	71	436.4	436.1
19cl	с	1	14.32	83	435.4	435.1
19cm	с	m	7.24	81	423.4	423.1
19cn	с	n	9.88	80	398.3	398.0
19co	с	0	9.67	65	398.4	398.0
19dg	d	g	8.67	69	426.3	426.0
19dh	d	h	9.42	77	414.3	414.0
19di	d	1	6.79	70	421.3	421.0
19dj	d	J	36.94	84	452.4	452.0
19dk	d	k	7.71	70	440.3	440.0
19dl	d	I	11.56	82	439.4	439.1
19dm	d	m	5.21	8/	427.3	427.0
190n	d	n	7.78	12	402.3	402.0
1900	D _	0	1.19	00	402.3	402.0
19ap	d	р	8.08	81 (0h	444.5	444.0
19eg	e	g	19.27	600	484.4	484.1
19en 10oi	e	n ;	21.43	00 79h	470.4	4701
1901	e	ı k	15.30	70° 60	419.4	4/9.1
190K	e	ĸ	15.10	57	470.4	470.1
1900 10fc	e f	U C	13.83	07	400.4	400.1
191g 10fb	1 f	g h	3.05	92	409.3	409.0 307.0
10fi	1 f	11 i	$\frac{5.12}{2.11}$	20 80	101 3	<u> </u>
19fo	f	1 0	2.41	90	385.3	385.0
-		-				•

^{*a*} Purity measurements were made by integration of the LC/MS traces based on UV absorption at 214 nm (similar integration patterns observed at 254 nm in most cases). ^{*b*} Integration after subtraction of solvent (ethyl acetate). ^{*c*} Typical patterns of selenium isotopes were obtained in these mass spectra and the expected molecular weights of all compounds are based on the predominant isotope of selenium-80.

Experimental Section

Solvents and fine chemicals were purchased from Aldrich Chemical Company (Castle Hill, Australia) and used as supplied. Resins derivatized with Fmoc-protected Rink amide linker were purchased from Novabiochem (100–200 mesh; loading capacity: 0.47 mmol/g).

LC/MS Analysis. LC analysis was conducted with a Zorbax C8 (4.6×150 mm) column using isocratic mobile phase containing 49% acetonitrile, 50% water, and 1% of an ammonium formate solution (this solution was made up

of 1 g of acetic acid and 315 mg of ammonium formate in 1 liter of 33% methanol in water). Detection was measured at 214 nm, and a flow rate was constant at 0.5 mL/min. MS analysis was conducted with an Agilent 1100 Series MSD system.

Proton (¹H) and carbon (¹³C) NMR spectra were recorded with a Bruker 300 spectrometer operating at 300 MHz for proton and 75 MHz for carbon. All spectra were recorded in CDCl₃ at 25 °C unless otherwise specified.

Solid-phase reactions were carried out in 10-mL or 1-mL screw-cap vials (Wheaton vials, Aldrich). The reaction vials were incubated in a heat block and gently shaken at specified temperatures. Purifications of resins were conducted with VacMaster-20 systems (Int. Sorbent Technology Ltd., UK).

Methyl 3-Iodo-4-[(E)-piperidin-1-yldiazenyl]benzoate (2). Sodium nitrite (0.7 g in 5 mL H_2O) was added to a magnetically stirred solution of methyl 4-amino-3-iodobenzoate (2.77 g. 10 mmol) in 1 M HCl (aq) (60 mL) at 5 °C. The resulting solution was allowed to stir at this temperature for 1 h and treated with piperidine in excess (10 mL). The reaction mixture was carefully decanted, and the precipitate (dark brown solid) was collected and redissolved in 5 mL of ethyl acetate. The crude product was subjected to flash chromatography (silica gel, 20% ethyl acetate in hexane elution) to afford the desired product 2 (3.1 g, 83% yield). LC: low chromophore-negative peak, t_r (retention time) = 28.2 min; MS: $m/z = 374.0 [M + H]^+$. ¹H NMR (300 MHz, CDCl₃): 8.49 (s, 1H), 7.91 (d, J = 6.4 Hz, 1H), 7.38 (d, J= 6.4 Hz, 1H), 3.87 (s, 7H), 2.02 (s, 6H). ¹³C NMR (75) MHz, CDCl₃): 165.43, 153.17, 140.32, 129.75, 127.50, 116.33, 95.48, 52.84, 51.74, 44.04, 26.05, 23.83.

Methyl 3-Iodo-4-(methylsulfanyl)benzoate (3). Sodium thiomethoxide (1.2 g, 17 mmol) was carefully added to a magnetically stirred solution of compound **2** (3.73 g, 10 mmol) in methanol (20 mL) at room temperature for 30 min. The resulting solution was cooled to 5 °C (on ice); then treated with trifluoroacetic acid (20 mL); and finally, allowed to warm to room temperature and stirred for 1 h. The solvent was removed under reduced pressure, and the crude oil was subjected to chromatography (silica gel, 10% ethyl acetate in hexane) to afford the compound **3** (2.9 g, 94% yield). LC, $t_r = 9.03$ min; MS: m/z = 308.9 [M + H]⁺. ¹H NMR (300 MHz, CDCl₃): 8.38 (s, 1H), 7.97 (d, J = 7 Hz, 1H), 7.06 (d, J = 7 Hz, 1H), 3.88 (s, 3H), 2.51 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): 165.14, 149.41, 139.66, 129.14, 126.87, 122.95, 95.05, 51.86, 16.42.

Methyl 3-Iodo-4-(methylselenyl)benzoate (4). NaBH₄ (1.81 g, 48 mmol) was added slowly (via spatula) into a solution of dimethyldiselenide (3.76 g, 20 mmol) in 100 mL of methanol over 1 h. The resulting reaction mixture was treated with **2** (3.73 g, 10 mmol) and allowed to stir at room temperature for 1 h. The reaction solution was then treated with trifluoroacetic acid (40 mL) at 70 °C for 1 h. The solvent was removed under reduced pressure, and the crude oil was subjected to flash chromatography (silica gel, 10% ethyl acetate in hexane elution) to afford the compound **4** (1.98 g, 56% yield). LC, $t_r = 10.66$ min; MS: m/z = 356.9 [M + H]⁺. ¹H NMR (300 MHz, CDCl₃): 8.31 (s, 1H), 7.88 (d, J = 7 Hz, 1H), 7.12 (d, J = 7 Hz, 1H), 3.88 (s, 3H), 2.34 (s,

Figure 2. Partial purification of the compound 18eh. LC/MS 1: crude product 18eh (24% purity). LC/MS 2: impurities eluted with 5% EtOAc in hexane. LC/MS 3: compound 18eh eluted with 60% EtOAc in hexane (85% purity).

3H). ¹³C NMR (75 MHz, CDCl₃): 165.22, 146.64, 139.51, 128.94, 127.82, 126.43, 110.63, 51.90, 8.82.

3-Iodo-4-(methylsulfanyl)benzoic Acid (5). Methyl 3-iodo-4-(methylsulfanyl)benzoate (**3**) (2 g, 6.5 mmol) methanol (5 mL) was added dropwise to 2 M NaOH aqueous solution (50 mL). The resulting mixture was stirred at room temperature for 2 h; then acidified using 2 M HCl solution until the pH reached 2–3; and finally, extracted with ether (3 × 20 mL). The combined extract was dried (MgSO₄) and concentrated under reduced pressure to afford the compound **5** as a white powder (1.7 g, 90% yield). LC, $t_r = 3.0$ min; MS (molecular ion peak was not detected). ¹H NMR (300 MHz, DMSO-*d*₆): 8.21 (s, 1H), 7.89 (d, J = 7 Hz, 1H), 7.25 (d, J = 7 Hz), 2.47 (s, 3H). ¹³C NMR (75 MHz, DMSO*d*₆): 165.89, 149.27, 139.22, 129.49, 127.23, 124.22, 95.96, 16.10. **3-Iodo-4-(methylselenyl)benzoic Acid (6).** Methyl 3-iodo-4-(methylselenyl)benzoate (**4**) (0.3 g, 0.85 mmol) in methanol (5 mL) was added dropwise to 2 M NaOH (aq) (10 mL). The resulting mixture was stirred at room temperature for 1 h; then acidified by addition 2 M HCl (aq) until the pH reached 2–3; and finally, extracted with ether (3 × 10 mL). The combined extract was dried (MgSO₄) and concentrated under reduced pressure to afford the title compound **6** (0.26 g, 90% yield). LC, $t_r = 3.3$ min; MS: m/z = 296.0 [M – COOH].⁺ ¹H NMR (300 MHz, DMSO-*d*₆): 8.16 (s, 1H), 7.82 (d, J = 7 Hz, 1H), 7.27 (d, J = 7 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (75 MHz, DMSO-*d*₆): 165.99, 146.43, 139.12, 129.32, 128.93, 127.45, 98.69, 8.80.

Preparation of Resin-Bound *o*-Iodomethylphenyl Sulfide 8 and Selenide 9. Rink amide resin (1 g, Novabiochem, 0.47 mmol/g) was suspended in 10 mL of 20% piperidine in DMF for 30 min (Fmoc deprotection) and carefully washed with DMF (3×5 mL) and DCM (3×5 mL). The resulting resin **7** was gently mixed (on shaker) with a mixture of **5** (0.28 g, 0.95 mmol), HOBt (0.135 g, 1 mmol), and 1,3-diisopropylcarbodiimide (0.126 g, 1 mmol) in DCM/DMF (1:1, 10 mL) at 40 °C for 16 h. The resins were carefully washed with DCM/DMF (1:1, 3×5 mL) and DCM (3×5 mL) and dried under reduced pressure for 2–3 h to afford **8**. A similar procedure was applied for preparation of **9** from **6**.

Typical Procedure for Coupling Alkynes To Give 11 or 12. Resins 8/9 (0.5 g, 0.23 mmol) were incubated with a mixture of alkyne 10 (2 mmol), $PdCl_2(PPh_3)_2$ (30 mg, 0.042 mmol), and CuI (5 mg, 0.052 mmol) in piperidine/THF (1:1, 4 mL) at 65 °C for 16 h. The resulting resins were filtered and carefully washed with DMF (3 × 5 mL), methanol (5 mL), and DCM (3 × 5 mL) and dried under reduced pressure for 30 min to afford 11/12.

Typical Reaction for Preparation of Resins 13/14. Resins **11/12** (0.6 g, 0.23 mmol) were incubated with iodine (0.1 g, 0.39 mmol) in dichloromethane (DCM) at 65 °C for 6 h. The resulting resins were filtered and carefully washed with DMF (3×5 mL), methanol (3×5 mL), and DCM (3×5 mL) and dried under reduced pressure for 30 min to afford **13/14.**

Typical Procedure for Suzuki Coupling of Boronic Acid 15 to Resin-bound Iodides 13/14 to Give 16/17. Resins 13/14 (0.06 g, 0.023 mmol) were incubated with a mixture of boronic acid 15 (1 mmol), Pd(PPh₃)₄ (10 mg, 0.009 mmol), TBAF (0.5 mL of 1 M solution in THF), and K_2CO_3 (25 mg, dissolved in 3 drops of water) in DMF (1 mL) at 65 °C for 16 h. The resulting resins were filtered and carefully washed with DMF (3 × 5 mL), methanol (5 mL), and DCM (3 × 5 mL) and dried under reduced pressure for 30 min to give the product 16/17.

Typical Procedure for the Cleavage of Resin-bound Products 16/17 To Give 18/19. Resins 16/17 were incubated with 20% TFA in DCM for 1 h. The cleavage solution was separated and dried under a stream of N_2 gas (15 min). The resulting crude product was dissolved in ethyl acetate (1 mL) and eluted with ethyl acetate (1 mL) through a plug of silica $(2 \text{ cm long} \times 0.5 \text{ cm diameter})$. The ethyl acetate was removed using a stream of N_2 (g) and the product, 18/19, was redissolved in methanol and analyzed by LC/MS (see above for typical conditions, see also Supporting Information). For compounds of less than 70% purity, the product was subject to a second purification procedure. This involved taking the product up in 5% ethyl acetate in hexane (1 mL) and transferring it to a small plug of silica (2 cm long $\times 0.5$ cm diameter) and eluting with 5% ethyl acetate in hexane (2 mL), followed by elution with 60% ethyl acetate in hexane (2 mL). The second elution was evaporated under a stream of N₂ (g) and redissolved in methanol, and an LC/MS profile was obtained (see above for typical conditions, see also Supporting Information).

Supporting Information Available. LC/MS profiles of all compounds in Table 1 and 2. This information is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

- (a) Zhang, T. Y.; O'Toole, J.; Proctor, C. S. Sulfur Rep. 1999, 22, 1. (b) Pelkey, E. T. Prog. Heterocycl. Chem. 2003, 15, 116. (c) Bianchini, C.; Meli, A. Synlett 1997, 643. (d) Russell, R. K.; Press: J. B. Compr. Heterocycl. Chem. II 1996, 2, 679. (e) Irie, M.; Uchida, K. Bull. Chem. Soc. Jpn. 1998, 71, 985.
- (2) (a) Magarian, R. A.; Overacre, L. B.; Singh, S.; Meyer, K. L. *Curr. Med. Chem.* **1994**, *1*, 61. (b) Jones, C. D.; Jevnikar, M. G.; Pike, A. J.; Peters, M. K.; Black L. J.; Thompson, A. R.; Falcone, J. F.; Clemens, J. A. *J. Med. Chem.* **1984**, *27*, 1057. (c) Bryant, H. U.; Dere, W. H. *Proc. Soc. Exp. Biol. Med.* **1998**, *217*, 45.
- (3) (a) Flynn, B. L.; Verdier-Pinard, P.; Hamel, E. Org. Lett.
 2001, 3, 651. (b) Pinney, K. G.; Bounds, A. D.; Dingeman, K. M.; Mocharla, V. P.; Pettit, G. R.; Bai, R.; Hamel, E. Bioorg. Med. Chem. Lett. 1999, 9, 1081. (c) Zhang, S.-X.; Bastow, K. F.; Tachibana, Y.; Kuo, S.-C.; Hamel, E.; Mauger, A.; Narayanan, V. L.; Lee, K.-H. J. Med. Chem. 1999, 42, 4081.
- (4) Norman, B. H.; Dantzig, A. H.; Kroin, J. S.; Law, K. L.; Tabas, L. B.; Shepard, R. L.; Palkowitz, A. D.; Hauser, K. L.; Winter, M. A.; Sluka, J. P.; Starling, J. J. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 3381.
- (5) (a) Boschelli, D. H.; Kramer, J. B.; Connor, D. T.; Lesch, M. E.; Schrier, D. J.; Ferin, M. A.; Wright, C. D. J. Med. Chem. 1994, 37, 717. (b) Cobb, R. R.; Felts, K. A.; McKenzie, T. C.; Parry, G. C. N.; Mackman, N. FEBS Lett. 1996, 382, 323. (c) Gualberto, A.; Marquez, G.; Garballo, M.; Youngblood, G. L.; Hunt, S. W., III.; Baldwin, A. S.; Sobrino F. J. Bioorg. Chem. 1998, 273, 7088.
- (6) (a) Martel, A. M.; Prous, J.; Castaner-Prous, J. *Drugs Future* 1997, 22, 386. (b) Miyazaki, H.; Murayama, T.; Ono, S.; Narita, H.; Nomura, Y. *Biochem. Pharmacol.* 1997, 53, 1263.
- (7) (a) Thesen, R. *Pharm. Ztg.* **1995**, *140*, 44. (b) Raga, M.;
 Palacin, C.; Castello, J. M.; Ortiz, J. A.; Cuberes, M. R.;
 Moreno-Manas, M. *Euro. J. Med. Chem.-Chim. Ther.* **1986**, *21*, 329.
- (8) (a) Bleavins, M. R.; de la Igelsia, F. A.; McCay, J. A.; White, L.; Kimber, L., Jr.; Munson, A. E.; *Toxicology* 1995, *98*, 111. (b) Wright, C. D.; Stewart, S. F.; Kuipers, P. J.; Hoffman, M. D.; Devall, L. J.; Kennedy; J. A.; Ferin, M. A.; Theuson, D. O.; Conroy, M. C. *J. Leukocyte Biol.* 1994, *55*, 443.
- (9) (a) Flynn, B. L.; Hamel, E.; Jung, M. K. J. Med. Chem. 2002, 45, 2670. (b) Flynn, B. L.; Flynn, G. P.; Hamel, E.; Jung, M. K. Bioorg. Med. Chem. Lett. 2001, 11, 2341. Banwell, M. G.; Flynn, B. L.; Wills, A. C.; Hamel, E. Aust. J. Chem. 1999, 52, 767. (f) Banwell, M. G.; Flynn, B. L.; Hamel, E.; Hockless, D. C. R. Chem. Commun. 1997, 207. (g) Hessian, K. O.; Flynn, B. L. Org. Lett. 2003, 5, 4377.
- (10) For related iodocycization reactions, see: (a) Yue, D.; Larock, R. C. J. Org. Chem. 2002, 67, 1905. (b) Yue, D. L.; Larock, R. C. Org. Lett. 2004, 6, 1037 and references cited therein.
- Structural validation and purity of cleaved reaction mixtures was determined using LC/MS; see also Supporting Information.
- (12) Mass returns were determined for 15% of the products. The quantity of starting material is based on the loading ascribed to the resin (0.47 mmol/g) and the weight of resin used.

CC050066W